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Boolean algebras

Given a topological space X , let CLOP(X) be the boolean algebra of the
clopen subsets of X .

The Stone space St(B) of a boolean algebra B is

St(B) := {G : G is an ultrafilter of B} .

The base for the topology is:{
Nb :=

{
G ∈ St(B) : b ∈ G

}
: b ∈ B

}
.

B is isomorphic to CLOP(St(B)) via the Stone duality map

b 7→ Nb =
{
G ∈ St(B) : b ∈ G

}
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Boolean completions

If X is a topological space and A ⊂ X , Reg (A) is the interior of the closure
of A in X . A is regular open if A = Reg (A).
RO(X) is the family of regular open subsets of X (CLOP(X) ⊆ RO(X)).

RO(X) is a complete boolean algebra, with the operations given by

¬U = X \ U,
∨
i∈I

Ui := Reg

⋃
i∈I

Ui

 , ∧
i∈I

Ui := Reg

⋂
i∈I

Ui

 .
A boolean algebra B is complete if and only if CLOP(St(B)) = RO(St(B)).

Every boolean algebra B can be densely embedded in the complete
boolean algebra RO(St(B)) via the Stone duality map.
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Boolean valued models

Definition

Let B be a boolean algebra and L be a first order relational language.
A B-valued model for L is a tuple
M = 〈M,=M,RMi : i ∈ I, cMj : j ∈ J〉
with

=M: M2 → B

(τ, σ) 7→ ~τ = σ�MB = ~τ = σ� ,

RM : Mn → B

(τ1, . . . , τn) 7→
�
R(τ1, . . . , τn)

�M
B =

�
R(τ1, . . . , τn)

�
for R ∈ L an n-ary relation symbol.

Moreno Pierobon (Pisa) Fullness and mixing property Hejnice - 03/02/2022 4 / 19



The constraints on RM and =M are the following:

for τ, σ, χ ∈ M,

1 ~τ = τ� = 1B;

2 ~τ = σ� = ~σ = τ�;

3 ~τ = σ� ∧
�
σ = χ

�
≤
�
τ = χ

�
;

for R ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈ Mn,�
R(τ1, . . . , τn)

�
∧

∧
h∈{1,...,n}

~τh = σh� ≤
�
R(σ1, . . . , σn)

�
.
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Definition
LetM be a B-valued model in the relational language L. The boolean
value �

φ
�M

B =
�
φ
�

of φ is defined by recursion as follows:�
¬ψ
�
= ¬
�
ψ
�
;�

ψ ∧ θ
�
=
�
ψ
�
∧ ~θ�;�

∃yψ(y)
�
=

∨
τ∈M
�
ψ(y/τ)

�
.
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Examples

LetML be the algebra of Lebesgue measurable subsets of [0; 1] and let
Null be the ideal of null sets. The measure algebra is MALG :=ML/Null.

Then L∞([0; 1]) is a MALG-valued model for the language of rings
L = {+, ·, 0, 1} where,for f , g, h ∈ L∞([0; 1]),�

+(f , g, h)
�
:=

[{
r ∈ R : f(r) + g(r) = h(r)

}]
Null

.

One can prove that L∞([0; 1]) � Tfields:�
∀f(f , 0→ ∃g(f · g = 1)

�
= 1MALG.
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Assume the class of all sets V to be a model of ZFC. Let M ∈ V a model of
(a sufficiently large fragment of) ZFC. Let B ∈ M a boolean algebra which
M models to be complete. We define in M the class of B-names MB by
induction on OrdM :

MB
0 := ∅, MB

α+1 := {f : X → B : X ⊆ MB
α };

MB
α :=

⋃
β<α MB

β if α is a limit ordinal;

MB :=
⋃
α∈OrdM MB

α .

The boolean value of =, ∈ and ⊆ in MB is:

~x ∈ y� :=
∨

t∈dom(y)

(~x = t� ∧ y(t));

~x ⊆ y� :=
∧

t∈dom(x)

(x(t)→ ~t ∈ y�);

~x = y� :=~x ⊆ y� ∧ ~y ⊆ x�.
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Quotients of B-valued models

LetM a B-valued model for L, and F a filter over B. Consider the
equivalence relation

τ ≡F σ ⇐⇒ ~τ = σ� ∈ F .

The B/F-valued modelM/F = 〈M/F ,RM/F
i : i ∈ I, cM/F

j : j ∈ J〉 is defined
letting:

M/F := M/ ≡F ;

for any n-ary relation symbol R in L

RM/F([τ1]F , . . . , [τn]F) = [
�
R(τ1, . . . , τn)

�
]F ∈ B/F ;

For any constant symbol c in L, cM/F = [cM]F .

In particular, if G is an ultrafilter,M/G is a traditional first order structure.
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Fullness

We will assume B to be complete.

Definition
Given a first order signature L, a B-valued modelM for L is full if for all
ultrafilters G on B, all L-formulae φ(x1, . . . , xn) and all τ1, . . . , τn ∈ M

M/G |= φ([τ1]G , . . . , [τn]G) if and only if
�
φ(τ1, . . . , τn)

�M
∈ G.

The MALG-valued model L∞([0; 1]) is not full for L = {+, ·, 0, 1} since
L∞([0; 1])/G is not a field for any G ∈ St(B).
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Theorem (Łoś Theorem for boolean valued models)

LetM be a B-valued model for the signature L.
The following are equivalent:

1 M is full, i.e. M/G |= φ([τ1]G , . . . , [τn]G)⇐⇒
�
φ(τ1, . . . , τn)

�M
∈ G;

2 for all LM-formulae φ(x0, . . . , xn) and all τ1, . . . , τn ∈ M there exists
σ1, . . . , σm ∈ M such that

∨
σ∈M

�
φ(σ, τ1, . . . , τn)

�
=

m∨
i=1

�
φ(σi , τ1, . . . , τn)

�
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Mixing property

Definition
A B-valued modelM satisfies the mixing property if for every antichain
A ⊂ B, and for every subset {τa : a ∈ A } ⊆ M, there exists τ ∈ M such that

a ≤ ~τ = τa� for every a ∈ A .

Proposition

LetM be a B-model for L satisfying the mixing property. ThenM is full.

If M is a countable model of ZFC, then MB is full but not mixing.
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Presheaves and sheaves

For (P,≤) partial order, a P-presheaf is a contravariant functor P → Set.

Assume (P,≤) is also upward complete. A P-presheaf F is a P- sheaf if
for every family {pi : i ∈ I} ⊆ P with p :=

∨
P {pi : i ∈ I}:

1 if f , g ∈ F (p) are such that

F (pi ≤ p)(f) = F (pi ≤ p)(g) for every i ∈ I,

then f = g;
2 if {fi ∈ F (pi) : i ∈ I} is a matching family i.e. such that, for i , j and

q ≤ pi , pj ,
F (q ≤ pi)(fi) = F (q ≤ pj)(fj),

then there exists a collation f ∈ F (p) such that

F (pi ≤ p)(f) = fi for every i ∈ I.
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Boolean valued models as presheaves

For every b ∈ B+ let Fb to be the filter generated by b.

Given a complete boolean algebra B and a B-valued modelM, its
associated presheaf FM : (B+)op → Set is such that

FM(b) =M/Fb for any b ∈ B+;

FM(b ≤ c) is the map

iMbc :M/Fc →M/Fb

[τ]Fc 7→ [τ]Fb .

Theorem (Monro - ‘86)

Let B be a complete boolean algebra. Then the B-valued modelM has
the mixing property if and only if the presheaf FM is a sheaf.
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Bundles

Definition
A bundle over X is a continuous map p : E → X .

A section of the bundle p : E → X is a continuous map s : X → E such
that p ◦ s is the identity of X . If s is defined only on a open subset U ⊂ X , it
is called a local section.
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Boolean valued models as bundles

Consider, for a B-valued modelM, the set

EM :=
⊔

G∈St(B)

M/G =
{
[σ]G : σ ∈ M,G ∈ St(B)

}
and p : EM → St(B) such that [σ]G 7→ G.

For every σ ∈ M define a global section σ̇ : St(B)→ EM as σ̇(G) := [σ]G .

Define a topology on EM by taking as a base the family

B :=
{
σ̇[Nb ] =

{
[σ]G : b ∈ G

}
: σ ∈ M, b ∈ B

}
.

A local section s : U → EM from some open subset U ⊆ St(B) is induced
by some element σ ∈ M if s = σ̇ � U.
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Mixing models have trivial global sections

Theorem
Let B a complete boolean algebra. For a B-valued modelM the following
are equivalent:

1 M has the mixing property;

2 every local section of the bundle EM → St(B) can be extended to a
global section induced by an element ofM;

3 FM is isomorphic to the sheaf of continuous sections of EM → St(B).
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..and for the fullness property?

For every formula φ(x) in the language define a bundle

Eφ
M

=
{
[σ]G :

�
φ(σ)

�
∈ G ∈ St(B)

}
.

over N~∃xφ(x)� with the map pφ : [σ]G 7→ G.

Theorem
For a B-valued modelM for the language L the following are equivalent:

M is full;

for every formula φ(x), pφ : Eφ
M
→ N~∃xφ(x)� is surjective;

for every formula φ(x), pφ : Eφ
M
→ N~∃xφ(x)� has at least one global

section.

Moreno Pierobon (Pisa) Fullness and mixing property Hejnice - 03/02/2022 18 / 19



..and for the fullness property?

For every formula φ(x) in the language define a bundle

Eφ
M

=
{
[σ]G :

�
φ(σ)

�
∈ G ∈ St(B)

}
.

over N~∃xφ(x)� with the map pφ : [σ]G 7→ G.

Theorem
For a B-valued modelM for the language L the following are equivalent:

M is full;

for every formula φ(x), pφ : Eφ
M
→ N~∃xφ(x)� is surjective;

for every formula φ(x), pφ : Eφ
M
→ N~∃xφ(x)� has at least one global

section.

Moreno Pierobon (Pisa) Fullness and mixing property Hejnice - 03/02/2022 18 / 19



References

Aratake. Sheaves of Structures, Heyting-Valued Structures, and a
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