Fullness and mixing property for boolean valued models in terms of sheaves and bundles joint work with Matteo Viale

Moreno Pierobon

Department of Mathematics
University of Pisa
Winter school in Abstract Analysis
Section Set Theory and Topology
Hejnice-03/02/2022

Boolean algebras

Given a topological space X, let $\operatorname{CLOP}(X)$ be the boolean algebra of the clopen subsets of X.
The Stone space $\operatorname{St}(B)$ of a boolean algebra B is

$$
S t(B):=\{G: G \text { is an ultrafilter of } B\} .
$$

The base for the topology is:

$$
\left\{N_{b}:=\{G \in \operatorname{St}(B): b \in G\}: b \in B\right\} .
$$

B is isomorphic to $\operatorname{CLOP}(\operatorname{St}(B))$ via the Stone duality map

$$
b \mapsto N_{b}=\{G \in \operatorname{St}(B): b \in G\}
$$

Boolean completions

If X is a topological space and $A \subset X, \operatorname{Reg}(A)$ is the interior of the closure of A in X. A is regular open if $A=\operatorname{Reg}(A)$.
$\mathrm{RO}(X)$ is the family of regular open subsets of $X(C L O P(X) \subseteq \mathrm{RO}(X))$.
$\mathrm{RO}(X)$ is a complete boolean algebra, with the operations given by

$$
\neg U=X \backslash \bar{U}, \quad \bigvee_{i \in I} U_{i}:=\operatorname{Reg}\left(\bigcup_{i \in I} U_{i}\right), \quad \bigwedge_{i \in I} U_{i}:=\operatorname{Reg}\left(\bigcap_{i \in I} U_{i}\right) .
$$

A boolean algebra B is complete if and only if $\operatorname{CLOP}(\operatorname{St}(B))=\operatorname{RO}(\operatorname{St}(B))$.
Every boolean algebra B can be densely embedded in the complete boolean algebra $\mathrm{RO}(\mathrm{St}(\mathrm{B}))$ via the Stone duality map.

Boolean valued models

Definition

Let B be a boolean algebra and \mathcal{L} be a first order relational language. A B-valued model for \mathcal{L} is a tuple $\mathcal{M}=\left\langle M,{ }^{\mathcal{M}}, R_{i}^{\mathcal{M}}: i \in I, c_{j}^{\mathcal{M}}: j \in J\right\rangle$
with

$$
\begin{aligned}
={ }^{\mathcal{M}}: M^{2} & \rightarrow \mathrm{~B} \\
(\tau, \sigma) & \mapsto \llbracket \tau=\sigma \rrbracket_{\mathrm{B}}^{\mathcal{M}}=\llbracket \tau=\sigma \rrbracket,
\end{aligned}
$$

$$
R^{\mathcal{M}}: M^{n} \rightarrow \mathrm{~B}
$$

$$
\left(\tau_{1}, \ldots, \tau_{n}\right) \mapsto \llbracket R\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket_{\mathrm{B}}^{\mathcal{M}}=\llbracket R\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket
$$

for $R \in \mathcal{L}$ an n-ary relation symbol.

The constraints on $R^{\mathcal{M}}$ and $=^{\mathcal{M}}$ are the following:

- for $\tau, \sigma, \chi \in M$,
(1) $\llbracket \tau=\tau \rrbracket=1_{\mathrm{B}}$;
(2) $\llbracket \tau=\sigma \rrbracket=\llbracket \sigma=\tau \rrbracket$;
(3) $\llbracket \tau=\sigma \rrbracket \wedge \llbracket \sigma=\chi \rrbracket \leq \llbracket \tau=\chi \rrbracket$;
- for $R \in \mathcal{L}$ with arity n, and $\left(\tau_{1}, \ldots, \tau_{n}\right),\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in M^{n}$,

$$
\llbracket R\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket \wedge \bigwedge_{h \in\{1, \ldots, n\}} \llbracket \tau_{h}=\sigma_{h} \rrbracket \leq \llbracket R\left(\sigma_{1}, \ldots, \sigma_{n}\right) \rrbracket .
$$

Definition

Let \mathcal{M} be a B-valued model in the relational language \mathcal{L}. The boolean value

$$
\llbracket \phi \rrbracket_{\mathrm{B}}^{\mathcal{M}}=\llbracket \phi \rrbracket
$$

of ϕ is defined by recursion as follows:

- $\llbracket \neg \psi \rrbracket=\neg \llbracket \psi \rrbracket ;$
- $\llbracket \psi \wedge \theta \rrbracket=\llbracket \psi \rrbracket \wedge \llbracket \theta \rrbracket ;$
- 【ヨy $\psi(y) \rrbracket=\bigvee_{\tau \in M} \llbracket \psi(y / \tau) \rrbracket$.

Examples

Let \mathcal{M}_{L} be the algebra of Lebesgue measurable subsets of $[0 ; 1]$ and let Null be the ideal of null sets. The measure algebra is MALG $:=\mathcal{M}_{L} /$ Null.
Then $L^{\infty}([0 ; 1])$ is a MALG-valued model for the language of rings $\mathcal{L}=\{+, \cdot, 0,1\}$ where,for $f, g, h \in L^{\infty}([0 ; 1])$,

$$
\llbracket+(f, g, h) \rrbracket:=[\{r \in \mathbb{R}: f(r)+g(r)=h(r)\}]_{\text {Null }} .
$$

One can prove that $L^{\infty}([0 ; 1]) \vDash T_{\text {fields }}$:

$$
\llbracket V f\left(f \neq 0 \rightarrow \exists g(f \cdot g=1) \rrbracket=1_{\text {MALG }} .\right.
$$

Examples

Let \mathcal{M}_{L} be the algebra of Lebesgue measurable subsets of $[0 ; 1]$ and let Null be the ideal of null sets. The measure algebra is MALG $:=\mathcal{M}_{L} /$ Null.

Then $L^{\infty}([0 ; 1])$ is a MALG-valued model for the language of rings $\mathcal{L}=\{+, \cdot, 0,1\}$ where,for $f, g, h \in L^{\infty}([0 ; 1])$,

$$
\llbracket+(f, g, h) \rrbracket:=[\{r \in \mathbb{R}: f(r)+g(r)=h(r)\}]_{\text {Null }}
$$

One can prove that $L^{\infty}([0 ; 1]) \vDash T_{\text {fields }}$:

Examples

Let \mathcal{M}_{L} be the algebra of Lebesgue measurable subsets of $[0 ; 1]$ and let Null be the ideal of null sets. The measure algebra is MALG $:=\mathcal{M}_{L} /$ Null.

Then $L^{\infty}([0 ; 1])$ is a MALG-valued model for the language of rings $\mathcal{L}=\{+, \cdot, 0,1\}$ where,for $f, g, h \in L^{\infty}([0 ; 1])$,

$$
\llbracket+(f, g, h) \rrbracket:=[\{r \in \mathbb{R}: f(r)+g(r)=h(r)\}]_{\text {Null }}
$$

One can prove that $L^{\infty}([0 ; 1]) \vDash T_{\text {fields }}$:

$$
\llbracket \forall f\left(f \neq 0 \rightarrow \exists g(f \cdot g=1) \rrbracket=1_{\text {MALG }} .\right.
$$

Assume the class of all sets V to be a model of $Z F C$. Let $M \in V$ a model of (a sufficiently large fragment of) ZFC. Let $\mathrm{B} \in M$ a boolean algebra which M models to be complete. We define in M the class of B -names M^{B} by induction on Ord^{M} :

- $M_{0}^{\mathrm{B}}:=\emptyset, M_{\alpha+1}^{\mathrm{B}}:=\left\{f: X \rightarrow \mathrm{~B}: X \subseteq M_{\alpha}^{\mathrm{B}}\right\} ;$
- $M_{\alpha}^{\mathrm{B}}:=\bigcup_{\beta<\alpha} M_{\beta}^{\mathrm{B}}$ if α is a limit ordinal;
- $M^{\mathrm{B}}:=\bigcup_{\alpha \in \mathrm{Ord}^{M}} M_{\alpha}^{\mathrm{B}}$.

The boolean value of $=, \epsilon$ and \subseteq in M^{B} is:

$$
\begin{aligned}
& \llbracket x \in y \mathbb{\|}:=\bigvee_{t \in \operatorname{dom}(y)}(\llbracket x=t \rrbracket \wedge y(t)) ; \\
& \llbracket x \subseteq y \rrbracket:=\bigwedge_{t \in \operatorname{dom}(x)}(x(t) \rightarrow \llbracket t \in y \rrbracket) ; \\
& \llbracket x=y \rrbracket:=\llbracket x \subseteq y \rrbracket \wedge \llbracket y \subseteq x \rrbracket .
\end{aligned}
$$

Quotients of B-valued models

Let \mathcal{M} a B-valued model for \mathcal{L}, and F a filter over B. Consider the equivalence relation

$$
\tau \equiv_{F} \sigma \quad \Longleftrightarrow \quad \llbracket \tau=\sigma \rrbracket \in F
$$

The B/F-valued model $\mathcal{M} / F=\left\langle M / F, R_{i}^{\mathcal{M} / F}: i \in I, c_{j}^{\mathcal{M} / F}: j \in J\right\rangle$ is defined letting:

- $M / F:=M / \equiv F ;$
- for any n-ary relation symbol R in \mathcal{L}

$$
R^{\mathcal{M} / F}\left(\left[\tau_{1}\right]_{F}, \ldots,\left[\tau_{n}\right]_{F}\right)=\left[\llbracket R\left(\tau_{1}, \ldots, \tau_{n}\right) \|\right]_{F} \in \mathrm{~B} / F
$$

- For any constant symbol c in $\mathcal{L}, c^{\mathcal{M} / F}=\left[c^{\mathcal{M}}\right]_{F}$.

In particular, if G is an ultrafilter, \mathcal{M} / G is a traditional first order structure.

Quotients of B-valued models

Let \mathcal{M} a B-valued model for \mathcal{L}, and F a filter over B. Consider the equivalence relation

$$
\tau \equiv \equiv_{F} \sigma \quad \Longleftrightarrow \quad \llbracket \tau=\sigma \rrbracket \in F
$$

The B / F-valued model $\mathcal{M} / F=\left\langle M / F, R_{i}^{\mathcal{M} / F}: i \in I, c_{j}^{\mathcal{M} / F}: j \in J\right\rangle$ is defined letting:

- $M / F:=M / \equiv_{F}$;
- for any n-ary relation symbol R in \mathcal{L}

$$
R^{\mathcal{M} / F}\left(\left[\tau_{1}\right]_{F}, \ldots,\left[\tau_{n}\right]_{F}\right)=\left[\llbracket R\left(\tau_{1}, \ldots, \tau_{n}\right) \|\right]_{F} \in \mathrm{~B} / F
$$

- For any constant symbol c in $\mathcal{L}, c^{\mathcal{M} / F}=\left[c^{\mathcal{M}}\right]_{F}$. In particular, if G is an ultrafilter, \mathcal{M} / G is a traditional first order structure.

Fullness

We will assume B to be complete.
Definition
Given a first order signature \mathcal{L}, a B -valued model \mathcal{M} for \mathcal{L} is full if for all ultrafilters G on B , all \mathcal{L}-formulae $\phi\left(x_{1}, \ldots, x_{n}\right)$ and all $\tau_{1}, \ldots, \tau_{n} \in \mathcal{M}$

$$
\mathcal{M} / G \models \phi\left(\left[\tau_{1}\right]_{G}, \ldots,\left[\tau_{n}\right]_{G}\right) \quad \text { if and only if } \quad \llbracket \phi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket^{\mathcal{M}} \in G .
$$

Fullness

We will assume B to be complete.

Definition

Given a first order signature \mathcal{L}, a B -valued model \mathcal{M} for \mathcal{L} is full if for all ultrafilters \mathcal{G} on B , all \mathcal{L}-formulae $\phi\left(x_{1}, \ldots, x_{n}\right)$ and all $\tau_{1}, \ldots, \tau_{n} \in \mathcal{M}$

$$
\mathcal{M} / G \models \phi\left(\left[\tau_{1}\right]_{G}, \ldots,\left[\tau_{n}\right]_{G}\right) \quad \text { if and only if } \quad \llbracket \phi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket^{\mathcal{M}} \in G .
$$

The MALG-valued model $L^{\infty}([0 ; 1])$ is not full for $\mathcal{L}=\{+, \cdot, 0,1\}$ since $L^{\infty}([0 ; 1]) / G$ is not a field for any $G \in \operatorname{St}(B)$.

Theorem (Łoś Theorem for boolean valued models)
Let \mathcal{M} be a B -valued model for the signature \mathcal{L}.
The following are equivalent:
(1) \mathcal{M} is full, i.e. $\mathcal{M} / G \vDash \phi\left(\left[\tau_{1}\right]_{G}, \ldots,\left[\tau_{n}\right]_{G}\right) \Longleftrightarrow \llbracket \phi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket^{\mathcal{M}} \in G$;
(2) for all $\mathcal{L}_{\mathcal{M}}$-formulae $\phi\left(x_{0}, \ldots, x_{n}\right)$ and all $\tau_{1}, \ldots, \tau_{n} \in \mathcal{M}$ there exists $\sigma_{1}, \ldots, \sigma_{m} \in \mathcal{M}$ such that

$$
\bigvee_{\sigma \in \mathcal{M}} \llbracket \phi\left(\sigma, \tau_{1}, \ldots, \tau_{n}\right) \rrbracket=\bigvee_{i=1}^{m} \llbracket \phi\left(\sigma_{i}, \tau_{1}, \ldots, \tau_{n}\right) \rrbracket
$$

Mixing property

Definition

A B-valued model \mathcal{M} satisfies the mixing property if for every antichain $A \subset B$, and for every subset $\left\{\tau_{a}: a \in A\right\} \subseteq M$, there exists $\tau \in M$ such that

$$
a \leq \llbracket \tau=\tau_{a} \rrbracket \text { for every } a \in A .
$$

Proposition

Let \mathcal{M} be a B -model for \mathcal{L} satisfying the mixing property. Then \mathcal{M} is full.
\square

Mixing property

Definition

A B-valued model \mathcal{M} satisfies the mixing property if for every antichain $A \subset B$, and for every subset $\left\{\tau_{a}: a \in A\right\} \subseteq M$, there exists $\tau \in M$ such that

$$
a \leq \llbracket \tau=\tau_{a} \rrbracket \text { for every } a \in A .
$$

Proposition

Let \mathcal{M} be a B -model for \mathcal{L} satisfying the mixing property. Then \mathcal{M} is full.

If M is a countable model of $Z F C$, then M^{B} is full but not mixing.

Presheaves and sheaves

For (P, \leq) partial order, a P-presheaf is a contravariant functor $P \rightarrow$ Set. Assume (P, \leq) is also upward complete. A P-presheaf \mathcal{F} is a P - sheaf if for every family $\left\{p_{i}: i \in I\right\} \subseteq P$ with $p:=\bigvee_{P}\left\{p_{i}: i \in I\right\}$:
(1) if $f, g \in \mathcal{F}(p)$ are such that

$$
\mathcal{F}\left(p_{i} \leq p\right)(f)=\mathcal{F}\left(p_{i} \leq p\right)(g) \quad \text { for every } i \in I,
$$

then $f=g$;
(2) if $\left\{f_{i} \in \mathcal{F}\left(p_{i}\right): i \in /\right\}$ is a matching family i.e. such that, for $i \neq j$ and
$q \leq p_{i}, p_{j}$,

$$
\mathcal{F}\left(q \leq p_{i}\right)\left(f_{i}\right)=\mathcal{F}\left(q \leq p_{j}\right)\left(f_{j}\right),
$$

then there exists a collation $f \in \mathcal{F}(p)$ such that

$$
\mathcal{F}\left(p_{i} \leq p\right)(f)=f_{i} \text { for every } i \in l .
$$

Presheaves and sheaves

For (P, \leq) partial order, a P-presheaf is a contravariant functor $P \rightarrow$ Set. Assume (P, \leq) is also upward complete. A P-presheaf \mathcal{F} is a P-sheaf if for every family $\left\{p_{i}: i \in I\right\} \subseteq P$ with $p:=\bigvee_{P}\left\{p_{i}: i \in I\right\}$:
(1) if $f, g \in \mathcal{F}(p)$ are such that

$$
\mathcal{F}\left(p_{i} \leq p\right)(f)=\mathcal{F}\left(p_{i} \leq p\right)(g) \quad \text { for every } i \in I,
$$

then $f=g$;
(2) if $\left\{f_{i} \in \mathcal{F}\left(p_{i}\right): i \in /\right\}$ is a matching family i.e. such that, for $i \neq j$ and
$q \leq p_{i}, p_{j}$,

$$
\mathcal{F}\left(q \leq p_{i}\right)\left(f_{i}\right)=\mathcal{F}\left(q \leq p_{j}\right)\left(f_{j}\right),
$$

then there exists a collation $f \in \mathcal{F}(p)$ such that

$$
\mathcal{F}\left(p_{i} \leq p\right)(f)=f_{i} \quad \text { for every } i \in I .
$$

Presheaves and sheaves

For (P, \leq) partial order, a P-presheaf is a contravariant functor $P \rightarrow$ Set. Assume (P, \leq) is also upward complete. A P-presheaf \mathcal{F} is a P-sheaf if for every family $\left\{p_{i}: i \in I\right\} \subseteq P$ with $p:=\bigvee_{P}\left\{p_{i}: i \in I\right\}$:
(1) if $f, g \in \mathcal{F}(p)$ are such that

$$
\mathcal{F}\left(p_{i} \leq p\right)(f)=\mathcal{F}\left(p_{i} \leq p\right)(g) \quad \text { for every } i \in I,
$$

then $f=g$;
if $\left\{f_{i} \in \mathcal{F}\left(p_{i}\right): i \in\{ \}\right.$ is a matching family i.e. such that, for $i \neq j$ and

$$
\mathcal{F}\left(q \leq p_{i}\right)\left(f_{i}\right)=\mathcal{F}\left(q \leq p_{j}\right)\left(f_{j}\right),
$$

then there exists a collation $f \in \mathcal{F}(p)$ such that

$$
\mathcal{F}\left(p_{i} \leq p\right)(f)=f_{i} \quad \text { for every } i \in I .
$$

Presheaves and sheaves

For (P, \leq) partial order, a P-presheaf is a contravariant functor $P \rightarrow$ Set. Assume (P, \leq) is also upward complete. A P-presheaf \mathcal{F} is a P-sheaf if for every family $\left\{p_{i}: i \in I\right\} \subseteq P$ with $p:=\bigvee_{P}\left\{p_{i}: i \in I\right\}$:
(1) if $f, g \in \mathcal{F}(p)$ are such that

$$
\mathcal{F}\left(p_{i} \leq p\right)(f)=\mathcal{F}\left(p_{i} \leq p\right)(g) \quad \text { for every } i \in I,
$$

then $f=g$;
(2) if $\left\{f_{i} \in \mathcal{F}\left(p_{i}\right): i \in l\right\}$ is a matching family i.e. such that, for $i \neq j$ and $q \leq p_{i}, p_{j}$,

$$
\mathcal{F}\left(q \leq p_{i}\right)\left(f_{i}\right)=\mathcal{F}\left(q \leq p_{j}\right)\left(f_{j}\right),
$$

then there exists a collation $f \in \mathcal{F}(p)$ such that

$$
\mathcal{F}\left(p_{i} \leq p\right)(f)=f_{i} \quad \text { for every } i \in I
$$

Boolean valued models as presheaves

For every $b \in \mathrm{~B}^{+}$let F_{b} to be the filter generated by b.

Given a complete boolean algebra B and a B-valued model \mathcal{M}, its associated presheaf $\mathcal{F}_{\mathcal{M}}:\left(\mathrm{B}^{+}\right)^{o p} \rightarrow$ Set is such that

- $\mathcal{F}_{\mathcal{M}}(b)=\mathcal{M} / F_{b}$ for any $b \in B^{+}$;
- $\mathcal{F}_{\mathcal{M}}(b \leq c)$ is the map

$$
\begin{gathered}
i_{b c}^{\mathcal{M}}: \mathcal{M} / F_{c} \rightarrow \mathcal{M} / F_{b} \\
{[\tau]_{F_{c}} \mapsto[\tau]_{F_{b}} .}
\end{gathered}
$$

Theorem (Monro - '86)
Let B be a complete boolean algebra. Then the B-valued model \mathcal{M} has the mixing property if and only if the presheaf $\mathcal{F}_{\mathcal{M}}$ is a sheaf.

Boolean valued models as presheaves

For every $b \in \mathrm{~B}^{+}$let F_{b} to be the filter generated by b.

Given a complete boolean algebra B and a B-valued model \mathcal{M}, its associated presheaf $\mathcal{F}_{\mathcal{M}}:\left(\mathrm{B}^{+}\right)^{o p} \rightarrow$ Set is such that

- $\mathcal{F}_{\mathcal{M}}(b)=\mathcal{M} / F_{b}$ for any $b \in B^{+}$;
- $\mathcal{F}_{\mathcal{M}}(b \leq c)$ is the map

$$
\begin{gathered}
i_{b c}^{\mathcal{M}}: \mathcal{M} / F_{c} \rightarrow \mathcal{M} / F_{b} \\
{[\tau]_{F_{c}} \mapsto[\tau]_{F_{b}} .}
\end{gathered}
$$

Theorem (Monro - '86)
Let B be a complete boolean algebra. Then the B -valued model \mathcal{M} has the mixing property if and only if the presheaf $\mathcal{F}_{\mathcal{M}}$ is a sheaf.

Bundles

Definition

A bundle over X is a continuous map $p: E \rightarrow X$.
A section of the bundle $p: E \rightarrow X$ is a continuous map $s: X \rightarrow E$ such that $p \circ s$ is the identity of X. If s is defined only on a open subset $U \subset X$, it is called a local section.

Boolean valued models as bundles

Consider, for a B-valued model \mathcal{M}, the set

$$
E_{\mathcal{M}}:=\bigsqcup_{G \in \operatorname{St}(\mathrm{~B})} \mathcal{M} / G=\left\{[\sigma]_{G}: \sigma \in M, G \in \operatorname{St}(\mathrm{~B})\right\}
$$

and $p: E_{\mathcal{M}} \rightarrow \operatorname{St}(B)$ such that $[\sigma]_{G} \mapsto G$.
For every $\sigma \in \mathcal{M}$ define a global section $\dot{\sigma}: \operatorname{St}(\mathrm{B}) \rightarrow E_{\mathcal{M}}$ as $\dot{\sigma}(\mathrm{G}):=[\sigma]_{G}$.
Define a topology on $E_{\mathcal{M}}$ by taking as a base the family

$$
\mathcal{B}:=\left\{\dot{\sigma}\left[N_{b}\right]=\left\{[\sigma]_{G}: b \in G\right\}: \sigma \in M, b \in \mathrm{~B}\right\}
$$

A local section $s: U \rightarrow E_{\mathcal{M}}$ from some open subset $U \subseteq \operatorname{St}(B)$ is induced by some element $\sigma \in \mathcal{M}$ if $s=\dot{\sigma} \upharpoonright U$.

Boolean valued models as bundles

Consider, for a B-valued model \mathcal{M}, the set

$$
E_{\mathcal{M}}:=\bigsqcup_{G \in \operatorname{St}(\mathrm{~B})} \mathcal{M} / G=\left\{[\sigma]_{G}: \sigma \in M, G \in \operatorname{St}(\mathrm{~B})\right\}
$$

and $p: E_{\mathcal{M}} \rightarrow \operatorname{St}(B)$ such that $[\sigma]_{G} \mapsto G$.
For every $\sigma \in \mathcal{M}$ define a global section $\dot{\sigma}: \operatorname{St}(\mathrm{B}) \rightarrow E_{\mathcal{M}}$ as $\dot{\sigma}(\mathrm{G}):=[\sigma]_{G}$.
Define a topology on $E_{\mathcal{M}}$ by taking as a base the family

$$
\mathcal{B}:=\left\{\dot{\sigma}\left[N_{b}\right]=\left\{[\sigma]_{G}: b \in G\right\}: \sigma \in M, b \in B\right\} .
$$

A local section $s: U \rightarrow E_{\mathcal{M}}$ from some open subset $U \subseteq \operatorname{St}(B)$ is induced by some element $\sigma \in \mathcal{M}$ if $s=\dot{\sigma} \upharpoonright U$.

Mixing models have trivial global sections

Theorem

Let B a complete boolean algebra. For a B-valued model \mathcal{M} the following are equivalent:
(1) \mathcal{M} has the mixing property;
(2) every local section of the bundle $E_{\mathcal{M}} \rightarrow \operatorname{St}(B)$ can be extended to a global section induced by an element of \mathcal{M};
(3) $\mathcal{F}_{\mathcal{M}}$ is isomorphic to the sheaf of continuous sections of $E_{\mathcal{M}} \rightarrow \operatorname{St}(\mathrm{B})$.

..and for the fullness property?

For every formula $\phi(x)$ in the language define a bundle

$$
E_{\mathcal{M}}^{\phi}=\left\{[\sigma]_{G}: \llbracket \phi(\sigma) \rrbracket \in G \in \operatorname{St}(\mathrm{~B})\right\}
$$

over $N_{\llbracket \exists x \phi(x) \rrbracket}$ with the map $p_{\phi}:[\sigma]_{G} \mapsto G$.
Theorem
For a B-valued model \mathcal{M} for the language \mathcal{L} the following are equivalent:

- M is full:
- for every formula $\phi(x), p_{\phi}: E_{\mathcal{M}}^{\phi} \rightarrow N_{\llbracket \exists x \phi(x) \rrbracket}$ is surjective;
- for every formula $\phi(x), p_{\phi}: E_{\mathcal{M}}^{\phi} \rightarrow N_{\llbracket \exists x \phi(x) \rrbracket}$ has at least one global section.

..and for the fullness property?

For every formula $\phi(x)$ in the language define a bundle

$$
E_{\mathcal{M}}^{\phi}=\left\{[\sigma]_{G}: \llbracket \phi(\sigma) \rrbracket \in G \in \operatorname{St}(\mathrm{~B})\right\}
$$

over $N_{\llbracket \exists x \phi(x) \rrbracket}$ with the map $p_{\phi}:[\sigma]_{G} \mapsto G$.

Theorem

For a B-valued model \mathcal{M} for the language \mathcal{L} the following are equivalent:

- \mathcal{M} is full;
- for every formula $\phi(x), p_{\phi}: E_{\mathcal{M}}^{\phi} \rightarrow N_{\llbracket \exists x \phi(x) \rrbracket}$ is surjective;
- for every formula $\phi(x), p_{\phi}: E_{\mathcal{M}}^{\phi} \rightarrow N_{\llbracket \exists x \phi(x) \rrbracket}$ has at least one global section.

References

國 Aratake．Sheaves of Structures，Heyting－Valued Structures，and a Generalization of Łoś Theorem．arXiv：2012．04317v1［math．LO］．
（ Monro．A Category－Theoretic Approach to Boolean－Valued Models of Set Theory．Journal of Pure and Applied Algebra 42 （1986）245－274．

嗇 Monro．Quasitopoi，Logic and Heyting－Valued Models．Journal of Pure and Applied Algebra 42 （1986）141－164．

Loullis．Sheaves and Boolean Valued Model Theory．Journal of Symbolic Logic 44.2 （1979）153－183．
囯 P．－Viale．Boolean valued models，presheaves，and étalé spaces． arXiv： 2006.14852 ［math．LO］．

